

Fig. 1. Perspective drawing of (1) indicating atom labeling. Methyl H atoms $\mathrm{HIIA}, \mathrm{H} I 1 B$ and $\mathrm{H} I I C$ are shown. The other orientation is rotated approximately 60° with respect to the orientation shown. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Perspective drawing of the molecular packing as viewed perpendicular to the $b c$ plane. The H atoms have been omitted for clarity. The thiazolopyrimidine rings form layers parallel to the $b c$ plane with neighbors 3.49 and $3 \cdot 60 \AA$ apart. There is essentially no overlap of the thiazolopyrimidine rings although Cl 2 is sandwiched between thiazole rings of adjacent molecules.

In the preceding paper we presented the structure of the 8 -chloroadenine analog (7-amino-2-chloro-[1,3]thiazolo[4,5-d]pyrimidine) (Larson, Anderson, Cottam \& Robins, 1989b) and we have recently reported the structure of the sodium salt of the 8 -aminoguanine analog $\{2,5$-diamino[1,3]thiazolo-[4,5-d]pyrimidin-7(6H)-one $\}$ (Larson, Anderson, Cottam \& Robins, 1989a). The nucleoside 5 -amino-$3-\beta$-d-ribofuranosyl-7(6 H)-thioxothiazolo[4,5- d]pyr-imidin-2(3H)-one, a 6-thioguanosine analog, has been reported (Nagahara et al., 1989). No other thiazolo $[4,5-d]$ pyrimidine crystal structures have been reported (Cambridge Structural Database, 1989).

References

Cambridge Structural Database (1989). Univ. Chemical Laboratory, Lensfield Road, Cambridge, England.
Cordes, A. W. (1983). Personal communication.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, S. B. (1980). PhD Dissertation, Brigham Young Univ., USA.
Larson, S. B., Anderson, J. D., Cottam, H. B. \& Robins, R. K. (1989a). Acta Cryst. C45, 1073-1076.
Larson, S. b., Anderson, J. D., Cottam, H. B. \& Robins, R. K. (1989b). Acta Cryst. C45, 1822-1825.
nagahara, K., Anderson, J. D., Kini, G. D., Dalley, N. K., larson, S. B., Smee, D. F., Sharma, B. S., Jolley, W. B., Robins, R. K. \& Cottam, H. B. (1989). J. Med. Chem. In the press.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1989). C45, 1827-1829

Structure of the Flavone Centaureidin

By Frank R. Fronczek, Felix J. Parodi and Nikolaus H. Fischer
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 13 December 1988; accepted 29 June 1989)

Abstract

Dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)-3,6-dimethoxy-4H-1-benzopyran-4-one, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{8}, \quad M_{r}=360 \cdot 3$, monoclinic, $P 2_{1} / c, \quad a=$ 8.393 (2),$\quad b=18.356$ (3),$\quad c=10.297$ (2) $\AA, \quad \beta=$ $97.964(13)^{\circ}, \quad V=1571 \cdot 1(8) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.523 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.54184 \AA, \mu=9.85 \mathrm{~cm}^{-1}$,

0108-2701/89/111827-03\$03.00
$F(000)=752, T=295 \mathrm{~K}, R=0.041$ for 2241 observations (of 3235 unique data). The A ring exhibits maximum deviation, 0.013 (2) \AA, from planarity, the heterocyclic B ring 0.017 (2) \AA, and phenyl C ring 0.006 (2) \AA. The B and C rings form a dihedral angle of $27.6(1)^{\circ}$. The methoxy substitution of ring B is
the same as observed for the antitumor flavone calycopterin [Vijayalakshmi, Rajan, Srinivasan, \& Ramachandran Nair (1986). Acta Cryst. C42, 17521754]. Intramolecular hydrogen bonds exist between the carbonyl and a hydroxy moiety of ring A with $\mathrm{O} \cdots$ O distance 2.580 (2) \AA and the angle at hydrogen $153(2)^{\circ}$, as well as an intermolecular hydrogen bond involving the same OH group as acceptor and the hydroxy group of ring C as donor, $\mathrm{O} \cdots \mathrm{O} 2 \cdot 806$ (2) \AA, angle at H $159(2)^{\circ}$. We have isolated crystals of centaureidin, and antitumor active flavone, from Baccharis salicina (Asteraceae) which was collected near Corpus Christi, Texas.

Experimental. Centaureidin was obtained as colorless needles, data-collection crystal of dimensions $0.08 \times$ $0.16 \times 0.20 \mathrm{~mm}$. Space group from absences $h 0 l$ with l odd and $0 k 0$ with k odd. Enraf-Nonius CAD-4 diffractometer with graphite monochromator, cell dimensions from setting angles of 25 reflections having $30>\theta>20^{\circ}$. Data collection by $\omega-2 \theta$ scans designed for $I=50 \sigma(I)$, subject to max. scan time $=$ 120 s . Scan rates varied $0 \cdot 46-3 \cdot 30^{\circ} \mathrm{min}^{-1}$. Reflections having $4<2 \theta<150^{\circ}, 0 \leq h \leq 10,0 \leq k \leq 23$, $-12 \leq l \leq 12$ were measured; corrected for background, Lorentz-polarization and absorption by ψ scans, minimum relative transmission $0.8435 ; 3235$ unique data; $R_{\mathrm{int}}=0.021$ for averaging redundant $0 k l$ and $0 k \bar{l}$ data. Standard reflections $100,020,002$, $\pm 1 \cdot 4 \%$ random variation, no decay correction. Structure solved using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) refinement by full-matrix least squares based on F with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ with 2241 data for which $I>3 \sigma(I)$ (994 unobserved reflections), using Enraf-Nonius SDP (Frenz \& Okaya, 1980). Non-H atoms anisotropic; H atoms located by ΔF, and methyl H atoms were included as fixed contributions while others were refined isotropically. Atomic scattering factors of Cromer \& Waber (1974) and anomalous coefficients of Cromer (1974). Final $R=0.041, w R=0.047, S=2.080$ for 264 variables, extinction coefficient $g=1.46(7) \times 10^{-6}$, where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}, max. shift in final cycle 0.02σ, max. residual density 0.21 , $\min . ~-0.16 \mathrm{e} \AA^{-3}$. Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1, * bond distances, bond angles and selected torsion angles in Table 2. Fig. 1 shows the atom-numbering scheme.

[^0]Table 1. Atomic coordinates and equivalent isotropic thermal parameters

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{j} \cdot \mathbf{a}_{j}$				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Ol	0.7711 (2)	$0 \cdot 21879$ (7)	$0 \cdot 5021$ (1)	$3 \cdot 10$ (3)
011	0.7625 (2)	0.40786 (7)	0.6062 (1)	$3 \cdot 26$ (3)
012	0.9772 (2)	0.34701 (8)	$0 \cdot 8009$ (1)	3.76 (3)
013	1-1218 (2)	0.23410 (8)	0.9102 (1)	$3 \cdot 82$ (3)
O14	1-1843 (2)	0.08311 (8)	0.8907 (2)	$4 \cdot 16$ (4)
O15	1.0284 (2)	0.00853 (8)	0.6824 (2)	$4 \cdot 95$ (4)
O24	0.3328 (2)	0.22053 (8)	0.1453 (2)	4.98 (4)
O25	0.3266 (2)	0.35263 (8)	0.0359 (2)	$4 \cdot 10$ (3)
C2	0.7351 (2)	$0 \cdot 2914$ (1)	$0 \cdot 5031$ (2)	2.73 (4)
C3	0.7986 (2)	0.3343 (1)	$0 \cdot 6042$ (2)	2.77 (4)
C4	0.9119 (2)	$0 \cdot 3065$ (1)	0.7116 (2)	$2 \cdot 86$ (4)
C5	1.0498 (2)	$0 \cdot 1945$ (1)	$0 \cdot 8075$ (2)	2.93 (4)
C6	1.0772 (3)	$0 \cdot 1206$ (1)	$0 \cdot 8008$ (2)	$3 \cdot 18$ (4)
C7	1.0021 (3)	0.0813 (1)	0.6922 (2)	$3 \cdot 37$ (4)
C8	0.9025 (3)	$0 \cdot 1140$ (1)	$0 \cdot 5916$ (2)	$3 \cdot 32$ (4)
C9	0.8735 (2)	$0 \cdot 1877$ (1)	$0 \cdot 6020$ (2)	$2 \cdot 82$ (4)
Cl 0	0.9447 (2)	0.2294 (1)	0.7071 (2)	2.74 (4)
C16	$0 \cdot 6190$ (3)	0.4238 (1)	0.6599 (3)	5.93 (7)
C17	$1 \cdot 1444$ (3)	0.0779 (1)	1.0205 (2)	$4 \cdot 43$ (5)
C18	0.6261 (2)	0.3118 (1)	0.3845 (2)	$2 \cdot 74$ (4)
C19	$0 \cdot 5250$ (3)	0.2587 (1)	$0 \cdot 3202$ (2)	$3 \cdot 17$ (4)
C20	0.4286 (3)	0.2744 (1)	0.2042 (2)	3.16 (4)
C21	0.4282 (3)	$0 \cdot 3440$ (1)	$0 \cdot 1505$ (2)	3.01 (4)
C22	0.5279 (3)	$0 \cdot 3970$ (1)	0.2131 (2)	3.35 (4)
C23	0.6258 (3)	$0 \cdot 3810$ (1)	0.3301 (2)	$3 \cdot 33$ (4)
C26	0.3184 (4)	0.4219 (1)	-0.0267 (3)	$5 \cdot 50$ (6)

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles (${ }^{\circ}$)

$\mathrm{Ol}-\mathrm{C} 2$	1.367 (2)	C3-C4	1.447 (3)
O1-C9	1.371 (2)	C4-C10	1.443 (3)
O11-C3	1.384 (2)	C5-C6	1.380 (3)
O11-C16	1.423 (3)	C5-C10	1.416 (3)
O12-C4	1.249 (2)	C6-C7	1.405 (3)
O13-C5	1.354 (2)	C7-C8	1.375 (3)
O14-C6	1.381 (2)	C8-C9	1.381 (3)
O14-C17	1.425 (3)	C9-C10	1.391 (3)
O15-C7	$1 \cdot 360$ (2)	C18-C19	1.398 (3)
O24-C20	1.363 (2)	C18-C23	1.389 (3)
O25-C21	1.366 (2)	C19-C20	1.376 (3)
O25-C26	1.422 (3)	$\mathrm{C} 20-\mathrm{C} 21$	1.393 (3)
C2-C3	1.355 (3)	C21-C22	1.382 (3)
C2-C18	1.469 (3)	C22-C23	1.392 (3)
C2-O1-C9	121•1 (1)	O13-C5-C10	119.5 (2)
C3-O11-C16	113.9 (2)	C6-C5-C10	120.0 (2)
C6-O14-C17	116.5 (2)	$\mathrm{O} 44-\mathrm{C} 6-\mathrm{C} 5$	123.6 (2)
$\mathrm{C} 21-\mathrm{O} 25-\mathrm{C} 26$	118.7 (2)	O14-C6-C7	117.2 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	120.6 (2)	C5-C6-C7	119.0 (2)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{Cl} 18$	110.8 (2)	O15-C7-C6	$120 \cdot 3$ (2)
C3-C2-C18	128.6 (2)	$\mathrm{O} 15-\mathrm{C} 7-\mathrm{C} 8$	117.4 (2)
$\mathrm{O} 11-\mathrm{C} 3-\mathrm{C} 2$	121.0 (2)	C6-C7-C8	122.3 (2)
$\mathrm{O} 11-\mathrm{C} 3-\mathrm{C} 4$	117.1 (2)	C7-C8-C9	117.7 (2)
C2-C3-C4	121.9 (2)	$\mathrm{Ol}-\mathrm{C} 9-\mathrm{C} 8$	116.7 (2)
$\mathrm{Ol2-C4-C3}$	121.8 (2)	$\mathrm{Ol}-\mathrm{C} 9-\mathrm{Cl0}$	$120 \cdot 8$ (2)
$\mathrm{Ol} 2-\mathrm{C} 4-\mathrm{Cl} 0$	122.8 (2)	C8-C9-C10	122.6 (2)
C3-C4-C10	115.4 (2)	$\mathrm{C} 4-\mathrm{Cl0}-\mathrm{C} 5$	121.5 (2)
O13-C5-C6	$120 \cdot 5$ (2)	$\mathrm{C} 4-\mathrm{C10-C9}$	120.1 (2)
$\mathrm{C} 5-\mathrm{Cl} 0-\mathrm{C} 9$	118.4 (2)	C19-C20-C21	$120 \cdot 3$ (2)
C2-C18-C19	118.9 (2)	O25-C21-C20	114.6 (2)
C2-C18-C23	122.3 (2)	$\mathrm{O} 25-\mathrm{C} 21-\mathrm{C} 22$	125.9 (2)
C19-C18-C23	118.7 (2)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	119.5 (2)
C18-C19-C20	120.7 (2)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$120 \cdot 1$ (2)
$\mathrm{O} 24-\mathrm{C} 20-\mathrm{Cl} 9$	118.3 (2)	$\mathrm{C} 18-\mathrm{C} 23-\mathrm{C} 22$	$120 \cdot 6$ (2)
O24-C20-C21	121.4 (2)		
$\mathrm{C} 16-\mathrm{O} 11-\mathrm{C} 3-\mathrm{C} 2$	86.0 (3)	C26--O25-C21-C22	-0.7(3)
C17-O14-C6-C5	$67 \cdot 1$ (3)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{Cl} 8-\mathrm{Cl} 9$	$26 \cdot 1$ (3)

Fig. 1. Numbering scheme with thermal ellipsoids drawn at the 40% probability level. H atoms have arbitrary radius.

Related literature. Isolation of centaureidin from Centaurea species (Bohlmann \& Zdero, 1967). Antitumor activity of centaureidin (Kupchan \& Bauerschmidt, 1971). Crystal structure of the pharmacologically active $5,4^{\prime}$-dihydroxy-3,6,7,8-
tetramethoxyflavone, calycopterin (Vijayalakshmi, Rajan, Srinivasan \& Ramachandran Nair, 1986).

References

Bohlmann, F. \& Zdero, C. (1967). Tetrahedron Lett. 33, 32393242.

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2.B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Kupchan, S. M. \& Bauerschmidt, E. (1971). Phytochemistry, 10, 664-666.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1978). multan78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Vidayalakshm, J., Rajan, S. S., Srinivasan, R. \& Ramachandran Nair, A. B. (1986). Acta Cryst. C42, 17521754.

Acta Cryst. (1989). C45, 1829-1831

Structure of the Guaianolide Dehydrocostus Lactone

By Frank R. Fronczek, David Vargas, Felix J. Parodi and Nikolaus H. Fischer
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 13 December 1988; accepted 29 June 1989)

Abstract

Decahydro-3,6,9-tris(methylene)azuleno-[4,5-b]furan-2 $(3 H)$-one, $\quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}, \quad M_{r}=230 \cdot 3$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.810$ (1), $b=11.403$ (1), $c=14 \cdot 240(1) \AA, \quad V=1268 \cdot 2(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.206 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54184 \AA, \mu=5.87 \mathrm{~cm}^{-1}$, $F(000)=496, T=298$ K, $R=0.035$ for 1432 observations (of 1515 unique data). The title compound, which exhibits no molluscicidal acitivity, differs in conformation from its 7α-hydroxy analog, 7α -hydroxy-3-desoxyzaluzanin C, which is highly active [Fronczek, Vargas, Fischer \& Hostettmann (1984). J. Nat. Prod. 47, 1036-1039]. The conformation of the seven-membered ring is a distorted twist-chair, with the pseudodiad axis passing through C 8 , and asymmetry parameter $\Delta C_{2}=8 \cdot 2^{\circ}$. The lactone ring is in the half-chair conformation with carbonyl carbon C 12 on the local twofold axis, and $\Delta C_{2}=3 \cdot 0^{\circ}$. The other five-membered ring has a distorted half-chair conformation with the axis passing through C4, and $\Delta C_{2}=7 \cdot 0^{\circ}$. Crystals of the guaianolide dehydrocostus lactone were isolated from costus oil purchased from Pierre Chauvet S. A., France.

Experimental. Dehydrocostus lactone, (1), was obtained as colorless needles, data-collection crystal of dimensions $0.44 \times 0.48 \times 0.72 \mathrm{~mm}$. Space group from absences $h 00$ with h odd, $0 k 0$ with k odd and $00 l$ with l odd. Enraf-Nonius CAD-4 diffractometer with graphite monochromator; cell dimensions from setting angles of 25 reflections having $40>\theta>35^{\circ}$. Data collection by $\omega-2 \theta$ scans designed for $I=$ $50 \sigma(I)$ subject to max. scan time $=120 \mathrm{~s}$. Scan rates varied $0.63-4.0^{\circ} \mathrm{min}^{-1}$. Reflections having $4<2 \theta<$ $150^{\circ}, 0 \leq h \leq 9,0 \leq k \leq 14,0 \leq l \leq 17$ were measured; corrected for background, Lorentz, polarization and absorption by ψ scans, minimum relative

(1)
(C) 1989 International Union of Crystallography

[^0]: * Tables of H -atom parameters, distances and angles involving H atoms, anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52077 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

